Sains Malaysiana 54(3)(2025): 785-795
http://doi.org/10.17576/jsm-2025-5403-14
Extraction and Antibacterial Activity of Alpinia conchigera Rhizome Extract and 1’S -1’-Acetoxychavicol Acetate (ACA) against Streptococcus
pneumoniae
(Pengekstrakan dan Aktiviti Antibakteria Ekstrak Rizom Alpinia conchigera dan 1'S -1'- Asetoksikavikol Asetat (ACA) terhadap Streptococcus pneumoniae)
NOR SYAZWANI MUHAMMAD ZAHIDAN1,
NUR UMAIRAH ATIQAH SABRI1, SITI NOOR ADNALIZAWATI ADNAN2,
KHALIJAH AWANG3 & NORMALIZA AB MALIK1,*
1Department of Conservative Dentistry and Prosthodontics, Faculty of
Dentistry, Universiti Sains Islam Malaysia, 55100 Kuala
Lumpur, Malaysia
2Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, 55100 Kuala Lumpur, Malaysia
3Department of Chemistry, Faculty of Science, University of Malaya, 50603
Kuala Lumpur, Malaysia
Received: 2 July 2024/Accepted: 25 November
2024
Abstract
The study aimed to
investigate the antibacterial effects of Alpinia conchigera rhizome extract and 1’S-1’-acetoxychavicol acetate (ACA) against Streptococcus pneumoniae strain successfully isolated from oral rinse of
older adults from an old folks’ home. The grounded rhizomes of A. conchigerawere macerated in hexane solvent to yield
crude hexane extract. Then, A. conchigera rhizome
extract was subjected to column chromatography to isolate ACA. Both A. conchigera rhizome extract and ACA were screened for
the antibacterial activity against S. pneumoniae ATCC 49619 and S.
pneumoniae isolate by disc diffusion test, minimum inhibitory concentration
(MIC), minimum bactericidal concentration (MBC) and time kill assay. The
highest inhibition zone recorded by A. conchigera rhizome extract (100 mg/mL) and ACA (100 mg/mL) were 36.83 ± 0.85 mm and 30.67
± 0.94 mm, respectively against S. pneumoniae isolate. The MIC and MBC
values recorded for A. conchigera rhizome
extract and ACA against both S. pneumoniae ATCC 49619 and S.
pneumoniae isolate ranging from 12.50 mg/mL to 50.00 mg/mL. Based on the time kill curve, both extracts with the concentration of 2
MIC showed killing properties
against S. pneumoniae isolate. Besides that, the morphology of S.
pneumoniae isolate treated with ACA (12.50 mg/mL) was observed under
scanning electron microscope and showed structural changes such as cell wall
disruption and morphological disorder. Moreover, several virulence genes of S.
pneumoniae were studied using RT-qPCR. It is observed that two genes, pavA and psaA function in adherence and attachment of S. pneumoniae to the host cells
were downregulated while nanA which
that responsible for biofilm production was upregulated. Therefore, both A. conchigera rhizome extract and ACA showed great potential
as alternative antibacterial agent against S. pneumoniae.
Keywords: Alpinia conchigera; pneumonia; rhizome extract; Streptococcus
pneumoniae; 1’S-1’-acetoxychavicol acetate
Abstrak
Penyelidikan ini bertujuan untuk mengkaji kesan
antibakteria ekstrak rizom Alpinia conchigera dan 1'S -1'-asetoksikavikol
asetat (ACA) terhadap strain Streptococcus pneumoniae yang berjaya dipencilkan
daripada bilasan mulut orang dewasa yang diperoleh daripada rumah orang tua.
Serbuk rizom A. conchigera direndam di dalam pelarut heksana untuk
menghasilkan ekstrak heksana. Kemudian, ekstrak rizom A. conchigera tersebut
dikenakan kolumn kromatografi bagi memencilkan ACA. Ujian resapan cakera (DDA),
kepekatan perencatan minimum (MIC), kepekatan bakterisidal minimum (MBC) dan asai
kadar masa membunuh telah dijalankan untuk menentukan sifat antibakteria
kedua-dua ekstrak rizom A. conchigera dan ACA terhadap S. pneumoniae ATCC
49619 dan pencilan S. pneumoniae. Berdasarkan prosedur DDA, ekstrak
rizom A. conchigera (100 mg/mL) dan ACA (100 mg/mL) masing-masing merekodkan
zon perencatan tertinggi iaitu 36.83 ± 0.85 mm dan 30.67 ± 0.94 mm apabila
diuji terhadap pencilan S. pneumoniae. Nilai MIC dan MBC yang direkodkan
oleh ekstrak rizom A. conchigera dan
ACA terhadap ATCC 49619 S. pneumoniae dan pencilan S. pneumoniae adalah
daripada julat 12.50 mg/mL sehingga 50.00 mg/mL. Berdasarkan lengkung kadar
masa membunuh, kedua-dua ekstrak dengan kepekatan 2
MIC
menunjukkan sifat bakterisidal terhadap strain S. pneumoniae. Selain
itu, morfologi strain S. pneumoniae yang telah dirawat dengan ACA (12.50
mg/mL) telah diperhatikan melalui mikroskop elektron imbasan dan menunjukkan
perubahan struktur seperti pemecahan dinding sel dan kerosakan morfologi. Tambahan
lagi, beberapa gen virulens S. pneumoniae telah dikaji menggunakan RT-
qPCR. Hasil mendapati bahawa dua gen, pavA dan psaA, yang
berfungsi untuk pelekatan S. pneumoniae terhadap sel perumah dikawal atur
turun, manakala gen nanA yang berfungsi untuk penghasilan biofilem telah
dikawal atur naik. Oleh itu, kedua-dua ekstrak rizom A. conchigera dan ACA menunjukkan potensi yang baik sebagai
agen antibakteria alternatif melawan S. pneumoniae.
Kata kunci: Alpinia conchigera; ekstrak
rizom; pneumonia; Streptococcus pneumoniae; 1’S -1’-asetoksikavikol asetat
REFERENCES
Abalaka,
M.E., Daniyan, S.Y., Oyeleke, S.B. & Adeyemo,
S.O. 2012. The antibacterial evaluation of Moringa oleifera leaf
extracts on selected bacterial pathogens. Journal of Microbiology Research 2(2): 1-4.
Awang,
K., Nurul Azmi, M., Aun, L.I.L., Aziz, A.N., Ibrahim, H. & Nagoor, N.H. 2010. The apoptotic effect of 1’S-1’-acetoxychavicol
acetate from Alpinia conchigera on human
cancer cells. Molecules 15(11): 8048-8059.
Balouiri, M., Sadiki, M. & Ibnsouda, S.K. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical
Analysis 6(2): 71-79.
Bouacha,
M., Besnaci, S. & Boudiar,
I. 2023. An overview of the most used methods to determine the in vitro antibacterial activity of honey. Acta Microbiologica Bulgarica 39(1): 23-30.
Department
of Statistics Malaysia. 2022. Department of Statistics Malaysia Press Release: Statistics
on Causes of Death, Malaysia.
Domenech,
M., García, E. & Moscoso, M. 2012. Biofilm formation in Streptococcus
pneumoniae. Microbial Biotechnology 5(4): 455-465.
Humphries, R.M., Miller, L., Zimmer, B., Matuschek, E.
& Hindler, J.A. 2023. Contemporary
considerations for establishing reference methods for antibacterial
susceptibility testing. Journal of Clinical Microbiology 61(6):
e0188622. https://doi.org/10.1128/JCM.01886-22
Ibrahim,
H., Chooi, O.H. & Hassan, R. 2000. Ethnobotanical survey of the ginger
family in selected Malay villages in Peninsular Malaysia. Malaysian Journal
of Science 19(1): 93-99.
Islam,
M.T. 2019. A literature-based phyto-pharmacological
review on A. conchigera Griff. Oriental
Pharmacy and Experimental Medicine 19(4): 379-392.
Israyilova,
A., Shoaib, M., Ganbarov, K., Huseynzada,
A., Hajiyeva, S. & Ismiyev, A. 2022.
Antimicrobial activity and time kill curve study of newly synthesized dialkyl carboxylate cyclohexane derivative; A novel anti-Pseudomonas
aeruginosa compound. Acta Scientiarum.
Technology 44(1): e58868.
https://doi.org/10.4025/actascitechnol.v44i1.58868
Latha,
C., Shriram, V.D., Jahagirdar, S.S., Dhakephalkar,
P.K. & Rojatkar, S.R. 2009. Antiplasmid activity of 1′-acetoxychavicol acetate from Alpinia galanga against multi-drug resistant bacteria. Journal of Ethnopharmacology 123(3): 522-525.
Liew, S.K., Azmi, M.N., In, L.L., Awang, K. & Nagoor,
N.H. 2017. Anti-proliferative,
apoptotic induction, and anti-migration effects of hemi-synthetic 1′ S-1′-acetoxychavicol
acetate analogs on MDA-MB-231 breast cancer
cells. Drug Design, Development and Therapy 11: 2763-2776.
Mitchell,
A.M. & Mitchell, T.J. 2010. Streptococcus pneumoniae: Virulence
factors and variation. Clinical Microbiology and Infection 16(5): 411-418.
Mohd
Salleh, H. 2014. Volatile constituents and trace metal analysis of Alpinia conchigera griff.
Degree of Master of Science, Faculty of Science, University of Malaya.
Mwale,
C., Makunike, K.N. & Mangoyi,
R. 2019. Antibacterial activity of Melia azedarach leaves against Salmonella
typhi and Streptococcus pneumoniae. International Annals of
Science 8(1): 47-53.
Nasution,
N.A., Artika, I.M. & Safari, D. 2020. Antibacterial activity of leaf
extracts of Anredera cordifolia (Ten.) Steenis and Muntingia calabura L. against Streptococcus pneumoniae. Current Biochemistry 7(1): 1-9.
Nieto,
P.A., Riquelme, S.A., Riedel, C.A., Kalergis, A.M.
& Bueno, S.M. 2013. Gene elements that regulate Streptococcus pneumoniae virulence and immunity evasion. Current Gene Therapy 13(1): 51-64.
Novick,
S., Shagan, M., Blau, K., Lifshitz, S., Givon‑Lavi, N., Grossman, N., Bodner,
L., Dagan, R. & Nebenzahl, Y.M. 2017. Adhesion and invasion of Streptococcus
pneumoniae to primary and secondary respiratory epithelial cells. Molecular
Medicine Reports 15(1): 65-74.
Parvekar, P., Palaskar, J., Metgud, S., Maria, R. &
Dutta, S. 2020. The minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus
aureus. Biomaterial Investigations in Dentistry 7(1): 105-109.
Poudel, P., Paudel, G., Acharya, R., George, A.,
Borgnakke, W.S. & Rawal, L.B. 2024. Oral health and healthy ageing: A
scoping review. BMC Geriatrics 24(1): 33.
https://doi.org/10.1186/S12877-023-04613-7
Rajagopal,
M. & Walker, S. 2017. Envelope structures of Gram-positive bacteria. Current
Topics in Microbiology and Immunology 404: 1-44.
Ranjan,
S., Bakthavathsalam, G., Raghavan, V.V. & Sindhu,
R.K. 2014. Growth of Streptococcus pneumoniae on Macconkey agar: Possibility of impossible? Journal of Clinical and Diagnostic Research 8(12): DL01. https://www.jcdr.net/article_fulltext.asp?id=5328
Rao, X., Huang, X., Zhou, Z. & Lin, X. 2013. An improvement of the 2ˆ(–delta delta CT) method for
quantitative real-time polymerase chain reaction data analysis. Biostatistics,
Bioinformatics and Biomathematics 3(3): 71-85.
Sakai,
F., Talekar, S.J., Klugman, K.P., Vidal, J.E. &
Investigators Group. 2013. Expression of Streptococcus pneumoniae virulence-related genes in the nasopharynx of healthy children. PLoS ONE 8(6): e67147.
Samaranayake,
L.P., MacFarlane, T.W. & Williamson, M.I. 1987. Comparison of Sabouraud dextrose and Pagano-Levin agar media for
detection and isolation of yeasts from oral samples. Journal of Clinical
Microbiology 25(1): 162-164.
Sharma,
S., Chauhan, A., Ranjan, A., Mathkor, D.M., Haque,
S., Ramniwas, S., Tuli, H.S., Jindal, T. & Yadav,
V. 2024. Emerging challenges in antimicrobial resistance: Implications for
pathogenic microorganisms, novel antibiotics, and their impact on
sustainability. Frontiers in Microbiology 15: 1403168.
https://doi.org/10.3389/FMICB.2024.1403168/BIBTEX
Tafroji,
W., Margyaningsih, N.I., Khoeri,
M.M., Paramaiswari, W.T., Winarti,
Y., Salsabila, K., Putri, H.F.M., Siregar, N.C., Soebandrio,
A. & Safari, D. 2022. Antibacterial activity of medicinal plants in
Indonesia on Streptococcus pneumoniae. PLoS ONE 17(9): e0274174. https://doi.org/10.1371/JOURNAL.PONE.0274174
Taib,
M.N.A.M., Anuar, N., Hanafiah, K.M., Al-Shammary, A.A.K., Saaid, M. & Awang, K. 2020. Chemicals
constituents isolated from cultivate Alpinia conchigera Griff. and antimicrobial activity. Tropical Life Sciences Research 31(1):
159-178.
Uduwana,
S., Abeynayake, N. & Wickramasinghe, I. 2023.
Synergistic, antagonistic, and additive effects on the resultant antioxidant
activity in infusions of green tea with bee honey and Citrus limonum extract as additives. Journal of Agriculture
and Food Research 12: 100571. https://doi.org/10.1016/J.JAFR.2023.100571
WHO.
2021. Pneumonia. World Health Organization.
https://www.who.int/health-topics/pneumonia#tab=tab_1
Zhang,
D., Zou, L., Wu, D.T., Zhuang, Q., Li, H., Mavumengwana,
V., Corke, H. & Gan, R.Y. 2021. Discovery of 1’-acetoxychavicol acetate
(ACA) as a promising antibacterial compound from galangal (Alpinia galanga (Linn.) Willd). Industrial Crops and Products 171: 113883.
https://doi.org/10.1016/J.INDCROP.2021.113883
Zhou,
G., Shi, Q.S., Huang, X.M. & Xie, X.B. 2015. The three bacterial lines of defense against antimicrobial agents. International
Journal of Molecular Sciences 16(9): 21711-21733.
Zhou,
J., Cai, Y., Liu, Y., An, H., Deng, K., Ashraf, M.A., Zou, L. & Wang, J.
2022. Breaking down the cell wall: Still an attractive antibacterial strategy. Frontiers
in Microbiology 13: https://doi.org/10.3389/FMICB.2022.952633/FULL
*Corresponding
author; email: liza_amalik@usim.edu.my
|